EMC TEST REPORT

The device described below is tested by Dongguan Nore Testing Center Co., Ltd. to determine the maximum emission levels emanating from the device, the severe levels which the device can endure and E.U.T.'s performance criterion. The test results are contained in this test report. Dongguan Nore Testing Center Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

Applicant : Boardcon Technology Limited
Address : Room 702, HuaFeng XinAn Business Building, 45Zone, BaoAn District, Shenzhen, GuangDong Province, China
Manufacturer : Boardcon Technology Limited
Address : Room 702, HuaFeng XinAn Business Building, 45Zone, BaoAn District, Shenzhen, GuangDong Province, China
E.U.T. : MINI3288 Computer on Module
Brand name : N/A
Model No. : MINI3288
Date of Receiver : November 19, 2016
Date of Test : November 21, 2016 to November 26, 2016
Date of Report : November 26, 2016

This Test Report is Issued Under the Authority of :
Prepared by

[Signature]
Aina Guo / Engineer

Approved & Authorized Signer

[Signature]
Ipri Fan / Authorized Signatory

This report shows that the E.U.T. is technically compliant with the CFR 47 FCC Part 15, Subpart B, Class B. This report applies to above tested sample only and shall not be reproduced in part without written approval of Dongguan Nore Testing Center Co., Ltd.
TABLE OF CONTENTS

1. SUMMARY OF TEST RESULTS .. 4

2. GENERAL INFORMATION .. 5
 2.1 Details of E.U.T. ... 5
 2.2 Description of Support Device ... 5
 2.3 Block Diagram of Test Setup ... 5
 2.4 Test Facility ... 5
 2.5 Abnormalities from Standard Conditions ... 6

3. MEASURING DEVICES AND TEST EQUIPMENT .. 7
 3.1 For Mains terminals Disturbance voltage Test .. 7
 3.2 For Radiated Emission Measurement .. 7

4. MAINS TERMINAL DISTURBANCE VOLTAGE MEASUREMENT .. 7
 4.1 Block Diagram of Test Setup ... 8
 4.2 Limit of Mains Terminal Disturbance voltage measurement .. 8
 4.3 Test Procedure ... 9
 4.4 Operating Condition of E.U.T. .. 9
 4.5 Mains Terminal Disturbance Voltage Test Results ... 9

5. RADIATED EMISSION MEASUREMENT ... 12
 5.1 Block Diagram of Test .. 12
 5.2 Limit of Radiated Emission Measurement .. 12
 5.3 Test Procedure .. 13
 5.4 Operating Condition of E.U.T. ... 13
 5.5 Radiated Emission Measurement Result .. 13

6. PHOTOGRAPH .. 16
 6.1 Photo of Conducted Emission Measurement .. 16
 6.2 Photo of Radiation Emission Measurement ... 16

Appendix I (Photos of E.U.T.) (1 page)
Revision History of This Test Report

<table>
<thead>
<tr>
<th>Report Number</th>
<th>Description</th>
<th>Issued Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTC1611287F</td>
<td>Initial Issue</td>
<td>2016-11-26</td>
</tr>
</tbody>
</table>

...
1. SUMMARY OF TEST RESULTS

The E.U.T. has been tested according to the following specifications:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Test Type</th>
<th>Result</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radiated Emission Test</td>
<td>PASS</td>
<td>Uncertainty: 3.4dB</td>
</tr>
</tbody>
</table>
2. GENERAL INFORMATION

2.1 Details of E.U.T.

- **E.U.T.** : MINI3288 Computer on Module
- **Model No.** : MINI3288
- **Brand name** : N/A
- **Rating** : DC 5V From Adapter
- **E.U.T. Type** : Class B
- **Operation Frequency** : Below 108MHz (Declaration by manufacturer)
- **Test Voltage** : AC 120V 60Hz
- **Cable** : None
- **Description of model difference** : None
- **Remark** : None

2.2 Description of Support Device

- **Adapter** : M/N: GDP30A-0503000-EU
 - Input: AC 100-240V, 50/60Hz, 0.8A
 - Output: DC 5V, 3.0A

2.3 Block Diagram of Test Setup

Block diagram of connection between the E.U.T. and simulators

```
AC Mains ← Adapter → EUT
```
2.4 Test Facility

Site Description

EMC Lab: Listed by CNAS, August 14, 2015
The certificate is valid until August 13, 2018
The Laboratory has been assessed and proved to be in compliance with CNAS/CL01
The Certificate Registration Number is L5795.

Listed by FCC, July 03, 2014
The Certificate Number is 665078.

Listed by Industry Canada, June 18, 2014
The Certificate Registration Number is 46405-9743

Name of Firm: Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)
Site Location: Building D, Gaosheng Science & Technology Park, Zhouxi Longxi Road, Nancheng District, Dongguan, Guangdong, China.

2.5 Abnormalities from Standard Conditions
None
3. MEASURING DEVICES AND TEST EQUIPMENT

3.1 For Mains terminals Disturbance voltage Test

<table>
<thead>
<tr>
<th>Item</th>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model No.</th>
<th>Serial No.</th>
<th>Last Cal.</th>
<th>Cal. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Test Receiver</td>
<td>Rohde & Schwarz</td>
<td>ESCI</td>
<td>101152</td>
<td>Mar. 07, 2016</td>
<td>1 Year</td>
</tr>
<tr>
<td>2.</td>
<td>L.I.S.N</td>
<td>Rohde & Schwarz</td>
<td>ENV 216</td>
<td>101317</td>
<td>Mar. 07, 2016</td>
<td>1 Year</td>
</tr>
<tr>
<td>3.</td>
<td>L.I.S.N</td>
<td>Schwarzbeck</td>
<td>NNLK8129</td>
<td>8129-212</td>
<td>Mar. 07, 2016</td>
<td>1 Year</td>
</tr>
<tr>
<td>4.</td>
<td>RF Switching Unit</td>
<td>Compliance Direction Systems Inc.</td>
<td>RSU-M2</td>
<td>38311</td>
<td>Mar. 07, 2016</td>
<td>1 Year</td>
</tr>
</tbody>
</table>

3.2 For Radiated Emission Measurement

<table>
<thead>
<tr>
<th>Item</th>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model No.</th>
<th>Serial No.</th>
<th>Last Cal.</th>
<th>Cal. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Test Receiver</td>
<td>Rohde & Schwarz</td>
<td>ESCI7</td>
<td>100837</td>
<td>Mar. 07, 2016</td>
<td>1 Year</td>
</tr>
<tr>
<td>2.</td>
<td>Antenna</td>
<td>Schwarzbeck</td>
<td>VULB9162</td>
<td>9162-010</td>
<td>Apr. 25, 2016</td>
<td>1 Year</td>
</tr>
<tr>
<td>3.</td>
<td>Positioning Controller</td>
<td>UC</td>
<td>UC 3000</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4.</td>
<td>Color Monitor</td>
<td>SUNSPO</td>
<td>SP-140A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5.</td>
<td>Single Phase Power Line Filter</td>
<td>SAEMC</td>
<td>PF201A-32</td>
<td>110210</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6.</td>
<td>3 Phase Power Line Filter</td>
<td>SAEMC</td>
<td>PF401A-200</td>
<td>110318</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7.</td>
<td>DC Power Filter</td>
<td>SAEMC</td>
<td>PF301A-200</td>
<td>110245</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8.</td>
<td>Cable</td>
<td>Huber+Suhner</td>
<td>CBL3-NN-9M</td>
<td>21490001</td>
<td>Mar. 07, 2016</td>
<td>1 Year</td>
</tr>
<tr>
<td>9.</td>
<td>Cable</td>
<td>Huber+Suhner</td>
<td>RG223U</td>
<td>N/A</td>
<td>Mar. 07, 2016</td>
<td>1 Year</td>
</tr>
<tr>
<td>10.</td>
<td>Power Amplifier</td>
<td>HP</td>
<td>HP 8447D</td>
<td>1145A00203</td>
<td>Mar. 07, 2016</td>
<td>1 Year</td>
</tr>
</tbody>
</table>
4. MAINS TERMINAL DISTURBANCE VOLTAGE MEASUREMENT

4.1 Block Diagram of Test Setup

4.2 Limit of Mains Terminal Disturbance voltage measurement

Test Standard: CFR 47 FCC Part 15, Class B

<table>
<thead>
<tr>
<th>Frequency range (MHz)</th>
<th>Limits (dB(µV))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15 to 0.5</td>
<td>66 to 56</td>
</tr>
<tr>
<td>0.5 to 5</td>
<td>56</td>
</tr>
<tr>
<td>5 to 30</td>
<td>60</td>
</tr>
</tbody>
</table>

Note: 1. The lower limit shall apply at the transition frequencies.
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.
4.3 Test Procedure

The E.U.T. is put on the 0.8 m high table and connected to the AC mains through a Artificial Mains Network (AMN). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission levels according to the FCC ANSI C63.4-2016 regulations during conducted emission test.

The bandwidth of the test receiver (R&S Test Receiver ESCI) is set at 9 KHz.

4.4 Operating Condition of E.U.T.

4.4.1 Setup the E.U.T. and simulators as shown in Section 2.3.

4.4.2 Turn on the power of all equipments.

4.4.3 Let the E.U.T. work in test mode (Empty Load) and test it.

4.5 Mains Terminal Disturbance Voltage Test Results

PASS.

Please refer to the following pages.
Dongguan Nore Testing Center Co., Ltd.
Report No.: NTC1611287F

Dongguan NTC Co., Ltd.
Tel: +86-769-22022444 Fax: +86-769-22022799
Web: http://www.ntc-c.com

Site: Conduction
Test Time: 2016-11-21 19:30:46

Graph:

- FCC PART 15B Class B_QP
- FCC PART 15B Class B_AVG

Table:

<table>
<thead>
<tr>
<th>No.</th>
<th>Frequency (MHz)</th>
<th>Factor (dBuV)</th>
<th>Reading (dBuV)</th>
<th>Level (dBuV)</th>
<th>Limit (dBuV)</th>
<th>Margin (dB)</th>
<th>Detector</th>
<th>P/F</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1500</td>
<td>10.80</td>
<td>42.10</td>
<td>52.90</td>
<td>65.99</td>
<td>-13.09</td>
<td>QP</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1500</td>
<td>10.80</td>
<td>28.50</td>
<td>39.30</td>
<td>55.99</td>
<td>-16.69</td>
<td>AVG</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.1860</td>
<td>10.80</td>
<td>36.90</td>
<td>47.70</td>
<td>64.21</td>
<td>-16.51</td>
<td>QP</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.1860</td>
<td>10.80</td>
<td>25.40</td>
<td>36.20</td>
<td>54.21</td>
<td>-18.01</td>
<td>AVG</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.2260</td>
<td>10.80</td>
<td>32.70</td>
<td>43.50</td>
<td>62.59</td>
<td>-19.09</td>
<td>QP</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.2260</td>
<td>10.80</td>
<td>21.10</td>
<td>31.90</td>
<td>52.59</td>
<td>-20.69</td>
<td>AVG</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.2620</td>
<td>10.80</td>
<td>27.80</td>
<td>38.40</td>
<td>61.36</td>
<td>-22.96</td>
<td>QP</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.2620</td>
<td>10.80</td>
<td>14.80</td>
<td>25.60</td>
<td>51.36</td>
<td>-25.76</td>
<td>AVG</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.3020</td>
<td>10.80</td>
<td>23.50</td>
<td>34.30</td>
<td>60.19</td>
<td>-25.89</td>
<td>QP</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.3020</td>
<td>10.80</td>
<td>12.70</td>
<td>23.50</td>
<td>50.19</td>
<td>-26.69</td>
<td>AVG</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.6180</td>
<td>10.80</td>
<td>23.90</td>
<td>34.70</td>
<td>56.00</td>
<td>-21.30</td>
<td>QP</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.6180</td>
<td>10.80</td>
<td>15.40</td>
<td>26.20</td>
<td>46.00</td>
<td>-19.80</td>
<td>AVG</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

Note: Level=Reading+Factor.
Margin=Limit-Level.
Test Report

Applicant: Boardcom
Product: MINI3288 Computer on Module
Model No.: MINI3288

Test Standard: FCC PART 15B Class B_QP

Phase: N
Temp.(°C)/Hum.%: 22(°C) / 52 %
Power Rating: AC 120V/60Hz

Test Mode: Empty Load

Test Engineer: Ryan

Test Data

<table>
<thead>
<tr>
<th>No.</th>
<th>Frequency (MHz)</th>
<th>Factor (dBuV)</th>
<th>Reading (dBuV)</th>
<th>Level (dBuV)</th>
<th>Limit (dBuV)</th>
<th>Margin (dB)</th>
<th>Detector</th>
<th>P/F</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1500</td>
<td>10.80</td>
<td>42.80</td>
<td>53.60</td>
<td>65.99</td>
<td>-12.39</td>
<td>QP</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1500</td>
<td>10.80</td>
<td>26.70</td>
<td>37.50</td>
<td>55.99</td>
<td>-18.49</td>
<td>AVG</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.1900</td>
<td>10.80</td>
<td>36.90</td>
<td>47.70</td>
<td>64.03</td>
<td>-16.33</td>
<td>QP</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.1900</td>
<td>10.80</td>
<td>24.40</td>
<td>35.20</td>
<td>54.03</td>
<td>-18.83</td>
<td>AVG</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.2540</td>
<td>10.80</td>
<td>27.10</td>
<td>37.90</td>
<td>61.62</td>
<td>-23.72</td>
<td>QP</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.2540</td>
<td>10.80</td>
<td>18.00</td>
<td>28.80</td>
<td>51.62</td>
<td>-22.82</td>
<td>AVG</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.3460</td>
<td>10.80</td>
<td>20.60</td>
<td>31.40</td>
<td>59.06</td>
<td>-27.68</td>
<td>QP</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.3460</td>
<td>10.80</td>
<td>11.80</td>
<td>22.60</td>
<td>49.06</td>
<td>-26.46</td>
<td>AVG</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.6340</td>
<td>10.80</td>
<td>20.40</td>
<td>31.20</td>
<td>56.00</td>
<td>-24.80</td>
<td>QP</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.6340</td>
<td>10.80</td>
<td>12.60</td>
<td>23.40</td>
<td>46.00</td>
<td>-22.60</td>
<td>AVG</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.6539</td>
<td>10.80</td>
<td>20.90</td>
<td>31.70</td>
<td>56.00</td>
<td>-24.30</td>
<td>QP</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.6539</td>
<td>10.80</td>
<td>10.40</td>
<td>21.20</td>
<td>46.00</td>
<td>-24.80</td>
<td>AVG</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

Note: Level=Reading+Factor.
Margin=Limit-Level.

Site: Conduction
Test Time: 2016-11-21 19:23:02

Dongguan Nore Testing Center Co., Ltd.
Report No.: NTC1611287F

Dongguan NTC Co., Ltd.
Tel: +86-799-22022444
Fax: +86-799-22022799
Web: [Http://www.ntc-c.com](http://www.ntc-c.com)
5. RADIATED EMISSION MEASUREMENT

5.1 Block Diagram of Test

![Block Diagram of Test]

5.2 Limit of Radiated Emission Measurement

Test Standard: CFR 47 FCC Part 15, Class B

<table>
<thead>
<tr>
<th>Frequency range MHz</th>
<th>Distance Meters</th>
<th>Field Strengths Limit µV/m</th>
<th>dB(µV)/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 ~ 88</td>
<td>3</td>
<td>100</td>
<td>40.0</td>
</tr>
<tr>
<td>88 ~ 216</td>
<td>3</td>
<td>150</td>
<td>43.5</td>
</tr>
<tr>
<td>216 ~ 960</td>
<td>3</td>
<td>200</td>
<td>46.0</td>
</tr>
<tr>
<td>960 ~ 1000</td>
<td>3</td>
<td>500</td>
<td>54.0</td>
</tr>
</tbody>
</table>

Remark:
(1) Emission level (dB)µV = 20 log Emission level µV/m
(2) The smaller limit shall apply at the cross point between two frequency bands.
(3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.
5.3 Test Procedure

E.U.T. and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. E.U.T. is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to FCC ANSI C63.4-2014 on radiated emission measurement. The bandwidth of the EMI test receiver (R&S ESCI7) is set at 120 KHz. The frequency range from 30 MHz to 1000 MHz is checked.

5.4 Operating Condition of E.U.T.

5.4.1 Setup the E.U.T. and simulators as shown in Section 2.3.

5.4.2 Turn on the power of all equipments.

5.4.3 Let the E.U.T. work in test mode (Empty Load) and test it.

5.5 Radiated Emission Measurement Result

PASS.

Please refer to the following pages.
<table>
<thead>
<tr>
<th>No.</th>
<th>Frequency (MHz)</th>
<th>Factor (dBm)</th>
<th>Reading (dBUV)</th>
<th>Level (dBU/m)</th>
<th>Limit (dBUV/m)</th>
<th>Margin (dB)</th>
<th>Detector</th>
<th>Height (cm)</th>
<th>Azimuth (deg)</th>
<th>P/F</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46.4900</td>
<td>-19.60</td>
<td>46.10</td>
<td>26.50</td>
<td>40.00</td>
<td>-13.50</td>
<td>QP</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>2</td>
<td>84.3198</td>
<td>-15.31</td>
<td>45.51</td>
<td>30.20</td>
<td>40.00</td>
<td>-9.80</td>
<td>QP</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>3</td>
<td>113.4200</td>
<td>-12.72</td>
<td>45.82</td>
<td>33.20</td>
<td>43.50</td>
<td>-10.30</td>
<td>QP</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>4</td>
<td>167.7400</td>
<td>-14.89</td>
<td>51.89</td>
<td>37.00</td>
<td>43.50</td>
<td>-6.50</td>
<td>QP</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>5</td>
<td>239.5200</td>
<td>-12.06</td>
<td>47.26</td>
<td>35.20</td>
<td>46.00</td>
<td>-10.80</td>
<td>QP</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>6</td>
<td>381.1399</td>
<td>-9.20</td>
<td>44.00</td>
<td>34.80</td>
<td>46.00</td>
<td>-11.20</td>
<td>QP</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
</tbody>
</table>

Note: Level=Reading+Factor.
Margin=Limit-Level.
Test Report

Test Standard: FCC Part 15B Class B 3M

Test Item: Radiation Emission

Test Distance: 3m

Applicant: Boardcon

Temp.(°C)/Hum.(%): 22(C) / 54%

Product: MINI3288 Computer on Module

Power Rating: AC 120V/60Hz

Model No.: MINI3288

Test Engineer: Ryan

Test Mode: Empty Load

Remark:

<table>
<thead>
<tr>
<th>No.</th>
<th>Frequency (MHz)</th>
<th>Factor (dB/m)</th>
<th>Reading (dBuV/m)</th>
<th>Level (dBuV/m)</th>
<th>Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>Detector</th>
<th>Height (cm)</th>
<th>Azimuth (deg.)</th>
<th>P/F</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>105.6599</td>
<td>-11.97</td>
<td>31.47</td>
<td>19.50</td>
<td>43.50</td>
<td>-24.00</td>
<td>QP</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>2</td>
<td>147.3700</td>
<td>-15.55</td>
<td>39.25</td>
<td>23.70</td>
<td>43.50</td>
<td>-19.80</td>
<td>QP</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>3</td>
<td>191.0200</td>
<td>-13.54</td>
<td>44.94</td>
<td>31.40</td>
<td>43.50</td>
<td>-12.10</td>
<td>QP</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>4</td>
<td>236.6100</td>
<td>-12.18</td>
<td>38.98</td>
<td>26.80</td>
<td>46.00</td>
<td>-19.20</td>
<td>QP</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>5</td>
<td>312.2699</td>
<td>-10.13</td>
<td>35.03</td>
<td>24.90</td>
<td>46.00</td>
<td>-21.10</td>
<td>QP</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>6</td>
<td>396.6600</td>
<td>-9.13</td>
<td>44.03</td>
<td>34.90</td>
<td>46.00</td>
<td>-11.10</td>
<td>QP</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
</tbody>
</table>

Note: Level = Reading + Factor.
Margin = Limit - Level.
6. PHOTOGRAPH

6.1 Photo of Conducted Emission Measurement

6.2 Photo of Radiation Emission Measurement
APPENDIX I
(Photos of E.U.T.)
Figure 1
General Appearance of the E.U.T.

Figure 2
General Appearance of the E.U.T.

--- End ---